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Abstract

It is shown how the placement of non-attacking bishops on a chessboard C is related
to the matching polynomial of a bipartite graph. Reduction algorithms for finding the
bishop polynomial of C are given. We interpret combinatorially the coefficients of this
polynomial and construct some interesting boards. Some applications of the bishop
polynomials are given.
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Resumen

Se muestra cómo la colocación de alfiles que no atacan en un tablero de ajedrez C se
relaciona con el polinomio de apareamiento de un grafo bipartito. Se dan algoritmos de
reducción para encontrar el polinomio del alfil de C. Se interpretan combinatoriamente
los coeficientes de este polinomio y se construyen algunos tableros interesantes. Se dan
algunas aplicaciones de los polinomios de alfiles.

Palabras clave: polinomios de alfiles, grafos bipartitos, apareamiento, tablero de ajedrez.
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1 Introduction

The graphs considered here are finite, undirected and have neither loops nor multiple
edges. Let G be a graph with p nodes. A matching M of G is a spanning subgraph
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whose components are nodes and edges only. A k-matching is a matching with k edges
and therefore p − 2k isolated nodes. We will denote the number of k-matchings in G by
m(G, k) or ak. It is clear that m(G, k) is equal to the number of selections of k independent
edges in G. A perfect matching consists of edges only.

The matching polynomial of a graph G was originally defined in Farrell [1]. Here we
assign to each node and edge of G, the weight w1 and w2 respectively. The matching
polynomial of G is

M(G;w1, w2) =
∑

w(M),

where the summation is taken over all the matchings M in G. This can also be written as

M(G;w1, w2) =
[ p
2 ]∑

k=0

m(G, k)wp−2k
1 wk

2 .

Two graphs are said to be comatching if they have the same matching polynomial.
The complement of a graph G is normally taken with respect to the complete graph Kp

and is written as G. The edges of G are those edges of Kp which are not found in G. In
some cases complement can be taken with respect to the complete bi-partite graph Km,n.

In this paper we define the bishop polynomial of a chessboard C as
∑

bkx
k, where bk

is the number of ways placing k non-taking bishops on C. Two chessboards A and C are
said to be similar or equivalent if they have the same bishop polynomial. We write board
for the term chessboard.

GC is the associated bi-partite graph for finding the bishop polynomial of C. The
construction of GC is described in the next section. There are two types of diagonals
described in C. The ith right diagonal with positive gradient is written as ri and the j-th
left diagonal with negative gradient is written as lj . A cell e is uniquely described by the
intersection of two diagonals ri and lj of C and can be written as e = (i, j). The board
C−e is obtained by removing cell e from C and the board C− [e] is obtained by removing
all the cells of the two diagonals (left and right) that intersect at e. The board C − ri is
obtained from C by removing the right diagonal ri. Similarly, the board C − li is obtained
from C by removing the right diagonal li.

When we say that a chessboard has m rows and n columns, we mean that each of these
rows and each of these columns contains at least one cell. A cell in a board is depicted as
an ‘x′. By disjoint boards C1 and C2 we mean boards which do not contain cells in the
same left diagonal or right diagonal.

2 The associated graph GC for C

For each chessboard C with m rows and n columns we refer to an associated rectangular
(m×n) board. The diagonals ri are ordered from the (1, 1)-th position along the first row
of C until (1, n)-th position, i.e. the end of first row. It then continues to the (m,n) th
position via column n. Thus diagonals ri exists for i = 1, 2, . . . ,m + n− 1. The diagonals
li are measured from the (m, 1)-th position of first column and proceeds sequentially to
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C:
x x

x x
x x x

GC :

1 2 3 4

1 2 3 4 5

0.002.0010.0018.002 0.0018.00320.002.004 20.002.00530.00

Figure 1: The construction of a bipartite graph for a given board.

the (1, 1)-th position of the first column. We then proceed along first row to reach the
(1, n)-th position, i.e end of first row. Thus diagonals li exists for i = 1, 2, . . . ,m + n − 1.

With the board C we associate a graph GC as follows. The set of right diagonals give
rise to a set of nodes V1 and the set of left diagonals give rise to a set of nodes V2 which
are each labelled 1, 2, . . . ,m + n − 1. An edge vivj is drawn where vi ∈ V1 and vj ∈ V2 iff
there is a cell (i, j) in C. Since a cell in C is on the intersection of a right diagonal and
a left diagonal, the graph GC is bipartite. We also note that a diagonal may contain no
cells of C and thus we ignore such a diagonal when drawing GC . We now illustrate the
construction of GC for a board C.

Example 1. Find GC for a board C shown below.
Solution: There are 5 right diagonals since 2 (1st and 4th) of the 7 right diagonals have
no cells. There are 4 left diagonals since 3 (first, 6th and 7th) of the 7 left diagonals are
empty. The 2 cells are listed from row 1 as (1,3) and (2,4). The two cells of second row are
(1,1) and (2,2). The three cells of the third row are (3,2), (4,3) and (5,4). We then draw
the bipartite graph GC as shown above in Figure 1. GC is disconnected in agreement with
the fact that C consists of two subboards: V1 = {1, 2, 3, 4, 5} and V2 = {1, 2, 3, 4}.

3 Matchings and bishops

Suppose that we choose cells from GC in such a way that if cell (i, j) is selected, then no
other cell in right diagonal i or left diagonal j can be chosen. Then we call such a choice
of a cell as the assignment of k non-attacking bishops on GC . The following theorem is
immediate.

Theorem 1 B(C;x) = M(GC ; 1, x).

Proof: Suppose that a bishop is placed on cell (i, j) of C. Then no other bishop can
be placed on that pair of diagonals that intersect on cell (i, j) of C in GC . We note
that cell (i, j) is represented by the edge vivj . The placing of a bishop on cell (i, j) is
equivalent to choosing the edge vivj of GC and ensuring that none of the other edges
incident with vertices i or j are to be selected. Thus the distribution k non-taking bishops
C is equivalent to a matching of GC with k edges. It can be seen that every assignment of
bishops corresponds to a unique matching in GC with k edges and vice versa. The weight
of an edge i.e. w2 is taken as x and that of a node is 1.
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We illustrate theorem 1 using the board C shown before in Figure 1.

Example 2. The matching polynomial of the graph GC can be verified. GC consists of
two disjoint trees on 4 nodes and 5 nodes. The matching polynomials are w4

1 +3w2w
2
1 +w2

2

and w5
1 + 4w2w

3
1 + 3w2

2w1.

M(GC ;w1, w2) = (w4
1 + 3w2w

2
1 + w2

2)(w
5
1 + 4w2w

3
1 + 3w2

2w1)
= w9

1 + 7w2w
7
1 + 16w2

2w
5
1 + 13w3

2w
3
1 + 3w4

2w1.

B(C;x) = 1 + 7x + 16x2 + 13x3 + 3x4.

4 Reduction algorithms for bishop polynomials

The following theorem describes a reduction process for finding bishop polynomials.

Theorem 2 (The Fundamental Cell Theorem) B(C;x) = B(C − e;x) + xB(C −
[e];x).

Proof: Let e be a cell of C. Then we either put a bishop on e or not. If a bishop is placed
on e then no other bishop can be placed on the two diagonals that intersect on e. Thus
we remove the cells of the two diagonals that contain e. This gives the board C − [e]. We
thus consider B(C − [e];x) together with the factor x which represents the contribution
of one bishop on a cell e. If a bishop is not to be placed on cell e, then we remove this cell
from C and consider the board C − e. The result follows.

The following theorem gives the bishop polynomial of a board C with m disjoint sub-
boards C1, C2, . . . , Ck.

Theorem 3 (The Component Theorem) Let B be a board consisting of k disjoint
sub-boards C1, C2, . . . , Ck. Then B(C;x) =

∏k
i=1 B(Ci;x).

Proof: The proof follows easily from the definition of disjoint sub-boards.

Theorem 4 (The Fundamental Right Diagonal Theorem) Let C be a chessboard
containing a right diagonal ri with k cells. Let C − ri,j be the board obtained from C by
removing right diagonal i and left diagonal j (i.e. one of the k left diagonals containing a
cell in the right diagonal i). Then

B(C;x) = B(C − ri;x) + x

k∑

j=1

B(C − ri,j ;x).

Proof: We examine the distribution of bishops on C with respect to the occupancy of the
right diagonal ri. If no bishop is placed on ri then we remove ri and consider the board
C−ri. If a bishop can be placed on a cell e say, of ri then it can be any of the k cells of ri.
No other bishop can be placed on ri and also the unique left diagonal lj which contained
that particular cell e of ri. Thus we need to remove each of the k left diagonals lj in turn
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with ri. In so doing we consider the board. We multiply by x since one bishop has been
placed on ri. The result follows easily.

We give an illustration of Theorem 2. In the reduced boards, empty rows or columns
that are situated between cells cannot be removed, else cells that were not in attacking
positions may now be in attacking positions. It can be easily seen that if a board C consists
of a row of k cells then this is similar to having k disjoint sub-boards with polynomial
(1 + x)k.

Example 3. Find B(C;x) for the board C in Example 1.
Solution: We reduce the board by the use of the fundamental cell algorithm as follows in
Figure 2.

C :

x x
x x

x x x

x x
→ x

x x x
↓

x
+ x x

x x
C4 ↓

x
x

x x x
↓

x
+ x x

x x
C3

x + x2 x
x x x

C5

x
x x x
C1

+ x x x
C2

↘
x + x2 x

x x
C6

Figure 2: The reduction of a given board C.

At each stage of the reduction process, two boards are obtained. We get a board with
one cell e removed which is drawn first. The two diagonals that intersect on e are then
removed to give another board that is drawn second. The reduction process as described
by Theorem 2 is applied repeatedly to all reduced boards.

If a row or column of a board has no cells, then we can remove the particular row
or column before reducing the boards. However, we must ensure that in so doing, a cell
e which was not on the same diagonal as another cell f say, is now placed on the same
diagonal with f . This leads to an incorrect calculation of bishop polynomial.

C1 consists of two disjoint subboards being a row of 1 cell and a row of 3 cells. C6

consists of two disjoint subboards being a row of 1 cell and a row of 2 cells. C6 and C5 are
similar. C2 consists of a row of 2 cells. This gives by the component theorem the following
polynomials:

B(C1;x) = (1 + x)4;B(C2;x) = (1 + x)2;B(C5;x) = (1 + x)3.

Thus we get

B(C;x) = B(C1;x) + xB(C2;x) + B(C6;x) + B(C5;x) + 2x2(1 + x)
= 1 + 7x + 16x2 + 13x3 + 3x4.
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5 Coefficients of bishop polynomials

A chessboard C cannot be analyzed easily using combinatorics. It is advantageous to use
the graph GC to find information about coefficients of B(C;x). We give expressions for
the first four coefficients of the matching polynomial.

Lemma 1 Let M(G;w1, w2) =
∑

k=0

akw
k
2wp−2k

1 . Then

(i) a0 = 1.

(ii) a1 = q

(iii) a2 =
(

q
2

)
−

p∑

i=1

(
di

2

)
where q is the number of edges of G and di is valency of

node i.

(iv) a3 =
(

q
3

)
− (q − 2)

p∑

i=1

(
di

2

)
+ 2

p∑

i=1

(
di

3

)
+

∑

i,j

(di − 1)(dj − 1) − T ; where T

is number of triangles in G and the last summation is done over all the edges ij in
G, see Farrell et al. [3].

The following result of bishop polynomials is given noting that there are no triangles
in a bipartite graph.

Theorem 5 Let the bishop polynomial B(C;x) of a chessboard C be as defined. Let C
have m right diagonals, n left diagonals and q cells. Then

(i) b0 = 1.

(ii) b1 = q.

(iii) b2 =
(

q
2

)
−

m∑

i=1

(
di

2

)
−

n∑

j=1

(
dj

2

)
; where di is number of cells in right diagonal

i and dj is the number of cells in left diagonal j.

(iv) b3 =
(

q
3

)
− (q − 2)





m∑

i=1

(
di

2

)
+

n∑

j=1

(
dj

2

)



+2





m∑

i=1

(
di

3

)
+

n∑

j=1

(
dj

3

)

+

∑

i,j

(di−1)(dj −1); where the last summation

is done over all integer i and j for which the cell (i, j) belongs to in C.

Proof: We need to examine the construction of GC from C. In GC a node corresponds
to either a right or left diagonal. Also an edge of GC corresponds to a cell in C. Now
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the degree of a node in GC is the same as the number of cells in a right diagonal of left
diagonal of C. Hence the results follows.

The following example illustrates theorem 5.

Example 4. Find the first four coefficients of the bishop polynomial of the board C in
figure 1.
Solution: Clearly b0 = 1. Now C has 7 cells and thus b1 = 7.

b2 =
(

7
2

)
−

{(
2
2

)
+

(
2
2

)}
−

{(
2
2

)
+

(
2
2

)
+

(
2
2

)}

= 16

b3 =
(

7
3

)
− (7 − 2)

{(
2
2

)
+

(
2
2

)
+

(
2
2

)
+

(
2
2

)
+

(
2
2

)}
+ 0

+ {(2 − 1)(1 − 1) + (2 − 1)(2 − 1) + (2 − 1)(2 − 1) + (2 − 1)(2 − 1)
+(1 − 0)(2 − 1) + (1 − 1)(2 − 1) + (1 − 1)(2 − 1)}

= 35 − 25 + 1 + 1 + 1
= 13

6 The use of Km,n in constructions of boards

We give the construction of a few boards.

(a) Let GC be the complete bipartite graph Km,n. GC has m right diagonals and n left
diagonals. Since the graph is complete, then each right diagonal of board has n cells
and each left diagonal has m cells. In this way there are mn cells in all.

Example 5. Find C for K3, 5.
Solution: We construct a board with 3 right diagonals and 5 left diagonals with no
cells of a diagonal missing as shown below in Figure 3.

C =

x

x x

x x x

x x x

x x x

x x

x

Figure 3: The chessboard for the complete bipartite graph K3,5.

(b) We can use the chessboard for the complete bipartite graph Km,n to find C for any
bi-partite graph G. We need to identify which cells of the board corresponding to
Km,n are to be used by examining the structure of the given graph G. This is shown
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for a path on n nodes say. Let GC be a path on n nodes (n is even). This path has
an edge between the ith and (i + 1)-th for i = 1, 2, . . . , n − 1. There are n/2 nodes
in each partition and thus n/2 of both types of diagonals. Each node has degree 2
except the two end nodes. Thus the first right diagonal has one cell whilst all other
right diagonals have 2 cells. Each left diagonal has 2 cells except the final one which
has 1 cell.

Example 6. Find C for the path Pn on 8 nodes.
Solution: This bi-partite graph is shown below in Figure 4. It has 7 edges. The
nodes of the both sets are read equivalently as 1,2,3 and 4. Thus the edge (5,4)
becomes (3,2) say. The 7 cells are thus (1,1),(2,1), (2,2), (3,2), (3,3), (4,3) and (4,4)
of the board corresponding to K4,4. These are shown in Figure 4.

1 3 5 7

2 4 6 8

10.0023.0019.6712.002 9.6712.00320.0023.004 20.0023.00520.0012.006 20.0012.00730.0023.008 30.0023.00930.001
C =

x x x x

x x x

Figure 4: The chessboard for for the path on 8 nodes.

(c) Furthermore,the unused cells of the board corresponding to Km,n constitute the board
for the bipartite complement of G i.e G. Thus we can construct equivalent boards
by using a pair of comatching bi-partite graphs. Firstly,the method described in
(b) is applied to determine the board for each graph. Then the remaining cells of
the two boards corresponding to Km,n gives the boards for the complements. An
example of a comatching pair is shown in Figure 5. It has been proved, see Wahid
[9], that the bipartite complements are also comatching. This next comatching pair
leads to a second pair of equivalent boards. The following example illustrates the
construction.

Example 7. Find the respective boards for the given graphs G and H as well as
their complements as shown in Figure 5.
Solution: The given graphs are G and H, which are then drawn with two disjoint
node sets. Next we draw the bipartite complements G and H. Finally both boards
for each graph are drawn separately. The cells of the complements are shown with
zeros. Use is made of the complete bipartite graph K4,4 and its associated board.
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G

2 4 6 8

1 3 5 7

5.0053.0015.0042.002 5.0042.00315.0053.004 15.0053.00515.0042.006 15.0042.00725.005

0
0 0

0 0 x

x x x x

x x x

0 0
0

GC

0
0 x

0 0 0
x x x x

x x x

0 0
0

HC

Figure 5: A comatching pair of graphs, its complements and associated boards.

7 Matchings and permutations in relation to non-taking
bishops

Let us consider the set P of permutations of n different elements with restrictions on their
positions. We associate a graph GP as follows. The nodes of GP are in two disjoint sets
A and B which represent the domain and range of the elements of P . We join two nodes
a and b if and only if b is a possible image of a. Thus b is not a restricted position for a.
Clearly GP is a bipartite graph. GP is not to be confused with GC since C is a chessboard
and P is a permutation.

Let α be an element of P . Then α is represented by a subgraph Hα of GP defined as
follows . The node set of Hα i.e. V (Hα) = V (GP ). Now domain α = A and range α = B
and Hα is a spanning subgraph of GP . Also, ab is an edge of Hα if and only if α(a) = b.
Also α is 1 − 1. Thus Hα is a perfect matching in GP .
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Let Pk be a set of k independent edges in GP . Then Pk defines a permutation αk

of k of the n elements with the given restrictions. Thus if Pk consists of the edges
ai1 , bj1 , ai2 , bj2 , . . . , aik , bjk

, then the corresponding permutation is air → bjr , where r =
1, 2, . . . , k. Now every matching in GP having k edges gives rise to a permutation αk and
conversely. Thus the number of permutations with restrictions of the n elements taking k
at a time is equal to the number of matchings with k edges in GP .

In order to convert a problem to one of non-attacking bishops, we need to formulate an
array which could then be used as an allowable chessboard C. For example, we examine
the problem of placing n different objects into n distinct boxes so that no two objects
occupy the same box. The answer is n!.

A box can be treated as a cell. An actual distribution can be represented as a sequence
ai,j meaning that object i is placed in cell j. We first form an associated chessboard with
the right diagonals indexed by the objects and the left diagonals indexed by properties of
the objects. In this case there are n right diagonals and n left diagonals. The integer “1”
is placed in position (i, j) meaning that the i-th object is placed in cell j. Zeros are placed
elsewhere. Since an object can occupy only one position, then each right diagonal must
contain exactly one of “1”. Also no two objects can occupy the same cell and thus each left
diagonal has exactly one of “1”. Clearly a “1” in the (i, j) position means that no other
“1” is in right diagonal i or left diagonal j. This suggests the idea of non-taking bishops
where a “1” is equivalent to a bishop. Thus the number of ways of placing n distinct
objects into distinct positions is the same as the number of ways of placing n non-taking
bishops on an n by n board C as seen in Example 5. It is easier to use the corresponding
graph Kn,n and extract the coefficient of xn with respect to Theorem 1. The matching
polynomial of Kn,n is

∑
k

(m)k(n)k

k! wm+n−2k
1 wk

2 with k < min(m,n), see Farrell [1]. The
coefficient of xn is (n)n(n)n

n! This is n!.
Certain problems have restrictions on the placement of the bishops and this leads to

the forbidden chessboard C∗. This board may have fewer cells than C and can be easier
to work with.

The Principle of Inclusion and Exclusion can be used to prove the following Theorem
with respect to C∗.

Theorem 6 The number of permutations of n objects in which no object is in a restricted

position is
n∑

k=0

(−1)kbk(C∗)(n − k)!, where C∗ is the board of forbidden cells.

Proof: Consider the set of permutations of n objects with restrictions on their positions.
Let ai be the property that the i-th object is in a forbidden position. Then we seek to
find N(a′1, a

′
2, . . . , a

′
n). This is expanded as

N(a′1, a
′
2, . . . , a

′
n) = N −

n∑

i=1

N(ai) +
∑

1≤i 6=j≤n

N(aiaj) − . . . (−1)nN(a1a2 · · · an)

The number of permutations with propery ai, i.e. N(ai) is found as follows. We need
to place the i-th object in its forbidden position. This is equal to the number of ways of
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placing one non-taking bishop on C∗, i.e. b1(C∗). The other n − 1 objects can be placed
without restrictions in (n − 1)! ways. Thus

∑

i

N(ai) = b1(C∗)(n − 1)!.

In general N(a1a2 · · · ak) is the number of permutations in which objects 1, 2, . . . , k
are in their forbidden positions. Now k of the n objects can be placed in the forbidden
positions in bk(C∗) ways and the remaining n − k objects are permuted in (n − k)! ways.
Thus ∑

N(a1a2 · · · ak) = bk(C∗)(n − k)!.

The result follows on summing the contributions.

8 Research developments and applications

We examine some areas of study by means of the graph-theoretic approach to bishop
theory.

(a) Guarding bishops

Suppose there is a system of diagonal corridors as shown in Figure 3 which has to be
guarded by robots. The cells indicate important areas of the grid.The role of a robot can
be viewed as that of a bishop. We simply place three non-attacking bishops since there
are 3 right diagonals, noting that the robots must not attack one another. It is possible
that a certain cell may be guarded by at least one bishop.

(b) Discordant permutations

Definition 1 Two permutations α1 and α2 on A = {1, 2, . . . , n} are said to be discordant
when α1(k) 6= α1(k) for all k ∈ A.

Theorem 7 The number of permutations that are discordant with the identity permuta-
tion based on A is n!

∑n
k=0

(−1)k

k! .

Proof: If a permutation is discordant with the identity permutation, then every element
must not be in the correct place i.e. α(k) 6= k. for all k ∈ A. This type of permutation
is called a derangement. This leads to the classical “problems de recontres” involves
derangements, see Riordan [6]. This problem is similar to that of placing n non-taking
bishops on a chessboard as described in Example 5 corresponding to the complete bi-
partite graph Kn,n. The bishops are not to be placed on a cell e = (k, k) for k = 1, 2, . . . , n.
These n cells constitute the board C∗ .It is the n-th row of cells of the general chessboard
described in Example 5. It consists of n disjoint subboards, each of which is a cell. By
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Theorem 4, B(C∗;x) = (1 + x)n. On expanding, the k-th term is C(n, k). Thus on
substituting into Theorem 6, we get

n∑

k=0

(−1)k
(

n
k

)
(n − k)! =

n∑

k=0

(−1)k
n!
k!

.

Similarly, we consider permutations that are discordant with two given permutations,
i.e. two-discordant permutations. This is called the “problème des ménages”, see Riordan
[6].

Theorem 8 The number of permutations that are discordant with the identity and the
n-cycle (123 . . . n) is

n∑

k=0

(−1)k
2n

2n − k

(
2n − k

k

)
(n − k)!.

Proof: In this case integer i is not in the ith and (i + 1)-th position for i = 1, 2, . . . , n− 1
and n is not in the first and last position. C∗ consists of the cells (k, k), (k, k + 1) for
k = 1, 2, . . . , n − 1 and cells (n, n), (n, 1). This board has 2n cells. The graph GC∗ is the
circuit C2n on 2n nodes. The matching polynomial of this graph is well known, see Farrell
[1] . We have

M(C2n;w1, w2) =
n∑

k=0

2n
2n − k

(
2n − k

k

)
w2n−2k

1 wk
2 .

Hence B(C∗;x) =
n∑

k=0

2n
2n − k

(
2n − k

k

)
xk.

The result follows by substituting into Theorem 6.

We illustrate the board C∗ for n = 5 in Figure 6.

C∗ =

x x x x

x x x x x

x

Figure 6: The board C∗ for n = 5 in two discordant permutation.

In the same manner one can solve problems in k-discordant permutations for k > 2.
The calculations are tedious, even though it is better to work with the graph GC∗ than
the allowable board C. For a solution to three discordant permutations, see Farrell [2].
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(c)Bishop polynomials and determinants

The following material has been reported in Wahid [8].

Definition 2 Let G be a node labelled graph having p nodes with labels 1, 2, . . . , p. We
associate with G, a p × p matrix A(G) = (aij), where

aij =





√
w2 if nodes i and j are adjacent and i < j,

−√
w2 if nodes i and j are adjacent and i > j,

0 if nodes i and j are not adjacent,
w1 if i = j.

Then A(G) is called the matching matrix of G. We associate a function called the
d-function, i.e d(A(G)) on A(G) as follows:

(i) For the null graph d(A(G)) = 1.

(ii) d(A(G)) = |A(G)|, if 0 < p < 3.

(iii) d(A(G) = w1d(A(G − vi)) + w2

∑

vivj∈E(G)

d(A(G − vi − vj)); where A(G − vi) is the

(p − 1) × (p − 1) matrix obtained from A(G) by removing row i and column j.

Lemma 2 d(A(G)) = M(G;w1, w2).

Proof: The result has been established in Wahid [8], by a proof using induction on the
number of nodes in G.

Example 8. Let G be the graph with edges (1,2), (2,3), (2,4) and (3,4). This is a triangle
with a twig attached to node 1.
Then

A(G) =




w1
√

w2 0 0
−√

w2 w1
√

w2
√

w2

0 −√
w2 w1

√
w2

0 −√
w2 −√

w2 w1




Using Lemma 2, we get

d(A(G)) = M(G;w1, w2)

= w1d




w1
√

w2
√

w2

−√
w2 w1

√
w2

−√
w2 −√

w2 w1


 + w2d

[
w1

√
w2

−sqrtw2 w1

]

= w1(w3
1 + 3w1w2) + w1(w2

1 + w2)
= w4

1 + 4w2
1w2 + w2

2.
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Also,

|A(G)| = w1d

∣∣∣∣∣∣

w1
√

w2
√

w2

−√
w2 w1

√
w2

−√
w2 −√

w2 w1

∣∣∣∣∣∣
−

√
w2

∣∣∣∣∣∣

−sqrtw2
√

w2
√

w2

0 w1
√

w2

0 −√
w2 w1

∣∣∣∣∣∣
= w1(w3

1 + 3w1w2) −
√

w2(−
√

w2(w2
1 + w2))

= w4
1 + 4w2

1w2 + w2
2.

Thus for some graph G, the matching function d(A(G)) gives the determinant. This
is not true in general and is stated in the following theorem, see Wahid [8].

Theorem 9 Let G be a graph with no circuits of even length. Then the matching polyno-
mial of G is the determinant of the matching matrix.

Definition 3 A d-graph of a graph G, denoted by D(G) is a graph for which |A(D(G))| =
M(G;w1, w2).

From the definition, if a graph has no even cycles, then G is same as D(G). By finding
D(GC) for the chessboard C, we proceed to the determinant by the above definition. This
is stated as follows.

Theorem 10 Let C be a board and GC its graph. Then B(C;x) = |A(D(GC ))|; where
w1 is replaced by x and w2 by 1 in the matching matrix.

The following example illustrates this theorem.

Example 9. Let C and GC be as shown in Figure 1.
Since GC has no even cycles, D(GC) is identical to GC . GC consists of two components,
i.e. a path on 5 nodes and a path on 4 nodes. Thus we get by using Theorems 4 and 9,
the following product of two determinants:

B(C;x) =

∣∣∣∣∣∣∣∣

1
√

x 0 0
−
√

x 1
√

x 0
0 −

√
x 1

√
x

0 0 −
√

x 1

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

1
√

x 0 0 0
−
√

x 1
√

x 0 0
0 −

√
x 1

√
x 0

0 0 −
√

x 1
√

x
0 0 0 −

√
x 1

∣∣∣∣∣∣∣∣∣∣

These determinants can be easily evaluated.
Thus B(C;x) = (1 + 3x + x2)(1 + 4x + 3x2) = 1 + 7x + 16x2 + 11x3 + 3x4.

(d) Connections with chromatic polynomials

Definition 4 A proper colouring of the nodes of a graph G is a colouring in which adjacent
nodes are coloured differently. The chromatic polynomial of a graph G is the number of
proper colourings of the nodes with λ colours. It is denoted as P (G,λ). The basic properties
of P (G,λ) can be found in Read [5].
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The matching polynomial is also related to the chromatic polynomial. The following
lemma has been proved in Farrell and Whitehead [4].

Lemma 3 Let M(G;w′) be the matching polynomial obtained by putting w1 = w2 = w.
We then replace wr by (λ)r for all r and use (λ)r ◦ (λ)s = (λ)r+s, where ◦ is the Zykov
product. Then M(G;w′) = P (Ḡ, λ), if and only if G has no triangles.

With respect to bishops, we need to consider graphs G which can have circuits of even
length. We then draw the board C as stated in Section 6. B(C;x) is modified since the
weights of M(G;w1, w2) are changed as seen in above Lemma 3. We set w1 = w2 = x.

9 Discussion

It is not easy to analyse a chessboard combinatorially. It is easy to see that the graphs
introduced give the problem of bishops a different outlook and makes it easier to solve.
Bishop theory can be regarded as an application of matching theory and thus a closer
connection between graph theory and combinatorics is seen.

The complete bipartite graph and its associated board plays an important role in the
construction of boards and their complements. The algorithms described can be comput-
erised to give efficient methods for finding B(C;x). The use of B(C;x) together with the
Priciple of Inclusion and Exclusion is important for solving problems on permutations.

It should be noted that whenever recurrence relations are possible for matching poly-
nomials of graphs like lattices or ladder type graphs, there would be corresponding recur-
rences for B(C;x). The use of B(C;x) for finding determinants and chromatic polynomials
is quite interesting.

I am presently using B(C;x) to solve problems on polyominoes on n cells without
holes, see Sequence M1424, in Sloane and Plouffe [7]. This is an unsolved problem in
mathematical physics. One hurdle is the question of symmetry in the graphs.
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